Indian Statistical Institute, Bangalore Centre B.Math. (III Year)/ M.Math. (II year) : 2014-2015 Semester I : Semestral Examination Markov Chains

14.11.2014

Time: 3 hours

Maximum Marks : 100

Note: The paper carries 105 marks. Any score above 100 will be taken as 100. State clearly the results you are using in your answers.

1. (8 + 12 = 20 marks) Let $\{X_n : n \ge 0\}$ be a Markov chain on $\{0, 1\}$ with transition probability matrix

$$\mathbf{P} = \left(\begin{array}{cc} 1-a & a \\ b & 1-b \end{array}\right)$$

Define $Z_n = (X_{n-1}, X_n)$ for n = 1, 2, 3, ...

(i) Show that $\{Z_n : n \ge 1\}$ is a Markov chain whose state space is the four point set $\{(0,0), (0,1), (1,0), (1,1)\}$.

- (ii) Determine the transition probability matrix of $\{Z_n\}$.
- 2. (25 marks) $\{X_n : n = 0, 1, 2, \dots\}, \{Y_n : n = 0, 1, 2, \dots\}$ are independent, irreducible, aperiodic, positive recurrent Markov chains on a countable state space S with the same transition probability matrix $P = ((P_{ij}))$. Let $T = \min\{n \ge 1 : X_n = Y_n\}$. Show that $T < \infty$ with probability one. (Hint: Consider $\{(X_n, Y_n) : n \ge 0\}$.)
- 3. (7 + 13 = 20 marks) Let $0 , and <math>\{X_n : n = 0, 1, 2, \dots\}$ be a Markov chain on $S = \{1, 2, 3\}$ with transition probability matrix

$$\mathbf{P} = \left(\begin{array}{rrr} p & 0 & (1-p) \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right)$$

- (i) Find the period of each state.
- (ii) What can you say about $\lim_{n\to\infty} \mathbf{P}^n$?
- 4. (20 marks) $\{N(t) : t \ge 0\}, \{M(s) : s \ge 0\}$ are independent Poisson processes with respective arrival rates $\lambda, \mu > 0$. Let $T = \inf\{s \ge 0 : M(s) = 1\}$. Find the probability mass function of N(T).

5. (20 marks) Suppose that shocks to a system occur according to a time homogeneous Poisson process $N(\cdot)$ with arrival rate $\lambda > 0$; let Y_k denote the k-th shock. Assume that $\{N(t) : t \ge 0\}$ and $\{Y_i : i = 1, 2, \cdots\}$ are independent families of random variables, and that $\{Y_i : i \ge 1\}$ is a sequence of i.i.d. positive random variables with mean $\mu > 0$. Assume also that the amplitude of a shock decreases with time at an exponential rate α . Let X(t) denote the sum of all amplitudes by time t. Find E[X(t)], t > 0.